车载网络趋势与演进

taike发布

随着车辆愈发先进,有助于提升道路安全性能、提供驾驶辅助功能以及提高能效,其底层技术的重要性也随之增加。无论是传统的内燃机(ICE)驱动车辆、混合动力汽车还是纯电动汽车,汽车设计中都包含了数十种传感器、微控制器及执行器,所有这些器件都会产生或处理大量的数据。

现代车辆不仅仅是一种交通工具,更是车轮上的先进计算平台。与所有计算系统一样,有效传输数据的能力对于这类系统的平稳运行和安全操作至关重要。

常用车载网络技术(IVN)

电子技术在车辆中已应用数十年,提供了许多实用功能,通常是为了增强安全性或娱乐性。在早期,这些功能很多都是独立存在的,既不向车辆的其他系统提供数据,也不依赖于其他系统产生的数据。然而,随着技术的进步,集成化带来的优势逐渐显现,汽车专用的网络技术随之应运而生。

在车辆中普遍采用的协议包括LIN总线(Local Interconnect Network, LIN)、CAN总线(Controller Area Network, CAN/CAN-FD)、FlexRay总线以及MOST总线(Media Oriented System Transport, MOST)。虽然每种解决方案都有其独特之处,并可满足不同的设计考量,但更重要的是,这些现有的技术方案难以满足现代车辆日益增长的需求。

LIN总线是一项成本效益高的技术,对于低数据速率(<20kbps)的应用场景来说易于实施和部署。然而,由于其带宽有限,并且系统节点数量被限制在12个以内,这限制了它在现代车辆中的价值。

CAN总线(以及后续迭代版本如CAN-FD)因其非常稳定可靠且相对不受电气干扰和噪声影响,在车辆和其他安全关键系统中得到了广泛应用。然而,有限的带宽(通常约为2Mbps)限制了它在某些数据密集型应用(如信息娱乐系统和摄像头)中的使用,同时也限制了节点的数量。目前,新的CAN-XL标准正在开发中,以处理更高速度并具备与以太网衔接的能力,但对于许多工程师来说,直接过渡到全以太网解决方案看起来更具吸引力。

FlexRay总线提供了精确的时序和同步功能,使其适用于诸如线控驱动等时间关键型应用。然而,与其他方式相比,复杂性限制了其普及程度。

MOST总线 仅用于信息娱乐系统,其适用性有限且成本高昂,因此随着该技术的逐步淘汰,已被其他解决方案所取代。

以太网被许多人视为替代现有多种解决方案的理想选择,它可以提供高带宽和低延迟的通信能力。然而,现行的以太网协议存在一个问题,即其固有的载波侦听多路访问/冲突检测(Carrier Sense Multiple Access with Collision Detection, CSMA/CD)机制,这意味着无法实现确定性操作,从而不适用于任何时间敏感的应用场景,比如线控驱动等。此外,以太网技术的成本也是一个问题。然而,考虑到以太网的巨大潜力,现在已经出现了如10BASE-T1S这样的确定性协议,它包含了物理层冲突避免(Physical Layer Collision Avoidance, PLCA)机制(参见图1),为时间关键型应用提供了所需的性能。此外,汽车以太网设备的成本正在迅速下降,这使得更多的汽车制造商能够应用高带宽特性。

分类: 泰科连接器